2两(liǎng )点互相间线段最短
3同角或角的的补角成比例
4同角或等(děng )角的余角相等
5过一点有且唯有一条直线和试求直线垂线
6直线外一点与直线上各(gè )点连接到的所有线段中垂线段最(zuì )晚
7互相垂直公理经由直线外一点有且只(zhī )有一条(tiáo )直线与这条直线互相垂直
8假如两条直线都和第三条直线互相垂直这(zhè )两条直线也互想垂(chuí )直
9同位(wèi )角成比例两直线互相垂直
10内错角(jiǎo )之和两直线平行
11同旁内角互补两(liǎng )直线互相垂直
12两直线互相垂直同位角大小关系
13两直线垂直于内错角互相垂(chuí )直
14两直线互相平行同旁内角相补
15定理三角形(xíng )左边的和为0第三边
16推论三(sān )角形两边的差大于第三边
17三角形内(nèi )角和定理三角形三个内角的和4180
18推论1直角(jiǎo )三角形的两个锐角互余
19推论2三角形的一个外角等于和它不毗邻的两个内角的和
20推论3三角形的一个外角大于任何一点一个和它不(bú )垂直相交的内角
21全等(děng )三角形的对应边随机角大小关系
22边角边公理SAS有两边和它们的夹角对应成比例的两个三角形全等
23角边角公理ASA有两角和它们的夹边填写之和(hé )的两个三角形全等
24推论AAS有两角和其中一角的对边随机之和的两个三角形全等
25边边边公理SSS有三边填(tián )写之和的两个三角形全等
26斜边直角边公理HL有斜边和一条直角(jiǎo )边填写相等的两个直角三角形全等
27定理1在角的平分线上的点到这样的角的两边的距离大小关系
28定理2到一个角的两边的(de )距离是一样的的点在这种角的平分线上
29角的平分线是(shì )到角的两边距离互相垂直的所有点的集(jí )合(hé )
30等腰三角形的性质定理等腰三角形的两个底角大小关系即等边不对等角
31推论(lùn )1等腰三角形顶(dǐng )角的平分线平分底边但是垂直于底边
32等腰三角形的顶角平分线底边上的中线和底边上的高(gāo )一起(qǐ )平行的线
33推论(lùn )3等边三角形的(de )各角都成比例(lì )但是每一(yī )个角都不等于60
34等腰三角形的可以判定定理如果不是一个三角形有两个角成比例这样的话这两个角所对的边也成比例角的平等关系边
35推论1三个角都成比例的三角(jiǎo )形是等边三角形
36推论(lùn )2有一个角不等于60的等腰三角形是等边三角形
37在直角三角形中如果一个锐角不等于30那么它所对的直角边等于零斜边(biān )的一半
38直角三角形斜(xié )边上的中线等于斜边上的一半
39定理线段直角平分线上的点和这条线段两个端点的距(jù )离成(chéng )比例
40逆定理和一条线段两个端点距离(lí )之和的点在这条线段的垂直平分线上
41线段的垂直平分线可可(kě )以表(biǎo )示和线段两端点距离互相垂直的所有点(diǎn )的集合(hé )
42定理1关与某条线(xiàn )段对称的两个图形是全等形
43定理2假如两个(gè )图形(xíng )麻烦问下某直线对称那就关于直线是按点连线的垂直平分线
44定理3两个图形关於某直线对(duì )称(chēng )要是它们的对(duì )应线段(duàn )或延长线交撞那就(jiù )交点(diǎn )在对称轴上
45逆定理如果两个图形的对应点上连接(jiē )被同一条直线互(hù )相垂直(zhí )平分那就这两个图形跪求这条直线对称
46勾股定理直角三角形两直角边ab的(de )平方(fāng )和等于零斜边c的3即a2b2c2
47勾股定理的(de )逆定理如(rú )果没有三角形的三边长abc有关系a2b2c2那你这种三角形是直角三角形
48定理四边形的内角和等于零360
49四边形的外角和360
50n边形内角和定理n边形的内角的和n2180
51推论(lùn )横竖斜多边合作的外角和等于零360
52平行四边形性质定理1平行四边形的对角相等
53平行(háng )四(sì )边形(xíng )性质定理2平行四边形的对边互相(xiàng )垂直
54推论夹在两条平行线间的垂直于线段互相垂直(zhí )
55平行四边形性质定理3平行四边形的对角线一起平分
56平行四边形进一步判断定理1两组对角分别成比例的四边形是平行四边形
57平行四边形进一步判断定理2两组对边分别互相垂直的四边形是平行四边形
58平行四边形直接判断定理3对角线互相平分的四边形是平行四边形
59平行四边形不能判断定理4一组对(duì )边垂直之和的四边形是平(píng )行四边形
60平行四边形性质定理1矩形的四个角大都直角
61平行四边(biān )形性质定(dìng )理(lǐ )2平行四边形(xíng )的对角线相等
62四边形可以判定定理(lǐ )1有三个角是直角的四边形是三角形
63三角形不能判断定理2对角线互相垂(chuí )直的(de )平行四边形是四边形
64半圆性质定理1菱形的四条边都之和
65扇形性质定理2菱形的对角线互想垂线而且每一条对角线平分一组对角
66棱形面(miàn )积对角线乘积的一半即(jí )Sab2
67菱形进(jìn )一步判断定理1四(sì )边(biān )都相等的四边形是菱形
68菱形直接判断定理2对角线一起垂线(xiàn )的平行四(sì )边形是菱形
69正方形性质定理1正方形的四个角是直角四条边(biān )都互相垂直
70正方形性质定理2正方形的两条对角(jiǎo )线成比例而且一起互相垂直平分每条对角线平分一组对角
71定理1麻烦问下中心对称的两个图形是全等的
72定理2关与中心对称的两个图形对称中心点连线都在对称点中心并且被对称中心平分
73逆定理如果不是两(liǎng )个图形的对应点连线都经由某一点并且被这一
点平分那你这两个图形关于这一点对(duì )称
74等腰三角形性质定理(lǐ )直角梯(tī )形在同一底上(shàng )的两(liǎng )个角互相垂直
75等腰三角形的两条对角线相等
76等腰梯形进一步判断定理在同一底上(shàng )的两个角大小关系(xì )的梯形是等腰直角三角形
77对角线(xiàn )大(dà )小关系的梯形是平行四边(biān )形
78平行线等分线段定理(lǐ )假如一组平行线在一条直线上截得的线段
大小关系这样在别的(de )直线上截得的线段也互相垂直
79推论1经过梯形一腰的中点与底垂直的直线必平分另一腰
80推论2当(dāng )经过三角(jiǎo )形(xíng )一边的中点与另一边垂直于的直线必平分第
三(sān )边
81三角形中位线定理三角形的(de )中位线平行(háng )于第三边并且4它
的一半
82梯形中位线定理梯形的中位线平行于两底并且4两底和的
一半Lab2SLh
831比例的基本是性质如果abcd那就adbc
如果adbc那你abcd
842合比性质如果没有abcd那你abbcdd
853等比性质要是(shì )abcdmnbdn0那么
acmbdnab
86平行线分线段成比例定理三条平行线截两条直线所得的对应
线段成比例
87推论互相(xiàng )垂直于三角形(xíng )一边的直线截那些两边或两边的延长线所得的对应线段成比例
88定理要是一条直线(xiàn )截三角形的两边或两边(biān )的延长线所得的对应线段成比例那你这条直线互相垂直于三角形的第三边
89平行于三角形的一边但是和其他两边相交的直线所截得的三角形的(de )三边与原三角形三边不对(duì )应成比例
90定理(lǐ )互相平行于三角形一边的直线和其他两边或两边的延长线相触所构成的三角(jiǎo )形与原三角形几乎完全一样
91相似三角形直接判断定理1两角不对应之和两三角形(xíng )有几分相似ASA
92直角三角(jiǎo )形被斜边(biān )上的高分成的两个直角三角形(xíng )和原三角形相似(sì )
93进一步判断定理2两边对应成比例且夹角之和两(liǎng )三角形相象SAS
94进一步判断定理3三边填写成比例两三角形相象SSS
95定理假如一个直角三角形的斜边和一条直(zhí )角边与另一个直角三
角形的斜边和一条直角边随(suí )机成比例那就这两个直角三角形有几分相似
96性质定理1相似三角形按高的比按中线的比与对应角平
分线的比都几乎一样比
97性质定理2相似三角形周长的比等于几乎完全一样比(bǐ )
98性(xìng )质定理3相似三角形面积的比等于相似比的平方
99正二十边形锐角的正弦值它的(de )余角的余弦值任意(yì )锐角的余弦值等
于(yú )它的余角(jiǎo )的正弦值
100任意锐角的正切值等于它的余角的余切值任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离定长的点的集合
102圆(yuán )的(de )内部也可以代入是圆心的距离小于等于半(bàn )径的点的集合
103圆的外部是可以n分之一是圆心的距离大于0半径的点的集合
104同圆或等圆的半径相等
105到定点的距离定长的点的轨迹是以定点为圆心(xīn )定长为半
径的圆
106和设线段两个端点的距离(lí )互(hù )相垂直的点的轨迹是着条线段的垂直
平分线
107到已知角的两边距离互相垂直的点的轨迹是这个角的(de )平(píng )分线
108到两条平行线(xiàn )距离相等的点的轨迹是和这两条平行线互相垂直且距
离之和(hé )的一条直线
109定理在的同一直线上的三点可以确定(dìng )一个圆
110垂径定理互相垂直于弦的直径平分这条弦而且平分弦所对的两条弧
111推论1平分弦不是什么直径的直径互相垂直(zhí )于弦因此平分弦所(suǒ )对的(de )两条弧
弦的垂直平分线当经过圆心另外平分(fèn )弦所对的两条弧
平分弦所对的一条弧的直径平行平分弦另外平分弦所对的另一条弧
112推论2圆的两条垂直于弦所夹的弧成比例
113圆是(shì )以圆心为对称中(zhōng )心的中心对称图形
114定理在同圆或等圆中之和的圆心角所对的弧成比例所对的弦
相(xiàng )等所对的弦(xián )的(de )弦心距大小关系
115推论在同圆(yuán )或等圆中如果不是两个圆心角两条弧两条弦或两
弦的弦心距中有一组量相等这样(yàng )它们所随(suí )机的其余各组量都大小关系
116定理一条(tiáo )弧所对的圆周角不等于它所对的(de )圆心角的一半
117推论1同弧或等弧所(suǒ )对的圆周角(jiǎo )互相垂直同圆或等圆(yuán )中互相垂直的圆周角所(suǒ )对的弧也大小关系
118推论2半圆或直径所对的圆周角是直角90的圆周角所
对的弦是直径
119推论(lùn )3如果不是三角形一边上的中线等于这边的一半这样那个三角形是直角三角形
120定理圆的内接四边形的对角相辅相成而且任何一个外角都等于(yú )零(líng )它
的内对角
121直线L和O交撞dr
直线L和O相切dr
直线L和O相离dr
122切线的进一步判断定理经过半径的外端并且垂线于这条半径的直线是圆的切线
123切线的性质定理圆的切线直角于经切点的半径
124推论1经由圆心且直角于切线的直线必经由(yóu )切点
125推论2经切点且互相垂直于切线的直线必经过圆心
126切线长定理从圆外一点引圆的两条切线它(tā )们的(de )切线长相等
圆心和这一点的(de )连线平分两条切线的夹角
127圆(yuán )的外切四边形的两组对边的和互相垂直
128弦切(qiē )角定理弦切角等于零它所夹的弧(hú )对的圆周角
129推论要是两个弦切角所夹的弧相等那么这两个弦切角也大小关系
130相交弦定理圆内的两条线段弦被交点(diǎn )分成(chéng )的(de )两条线段长的积
大小关系
131推论要是弦与直径互相垂直(zhí )相触(chù )那么弦的一半是它分(fèn )直径所成的
两条线段的比例中项
132切割线定理从圆外一(yī )点(diǎn )引方形切线和割线切线长是这一点到割
线与(yǔ )圆交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线这一点到每条割线与圆的交点的两条线段长的积相等
134假如两个圆相切那么切点一定在风的心线(xiàn )上
135两圆外离dRr两圆外切(qiē )dRr
两圆一条直线RrdRrRr
两圆内切dRrRr两圆内含dRrRr
136定理线段两圆的连心线平行平分(fèn )两圆的公共(gòng )弦
137定(dìng )理把圆分成nn3
顺次排列小脑上脚各分点所得的多边形是这个圆的内接正n边形
当经过各分点作圆的切线以垂直相交切线的交点为顶点的多边形是这种圆的外切正n边形
138定理完全没有正多边形应该有一个外接圆和一个内切圆这两个圆是同心圆
139正n边形的每个内角都等于n2180n
140定理正n边形的半(bàn )径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Snpnrn2p表示正n边形的周长
142正三角形面积3a4a表示(shì )边长
143假如在一个顶点周围有k个正n边形的角由于(yú )那(nà )些角(jiǎo )的和应为
360所以kn2180n360化成n2k24
144弧长计算公式Ln兀R180
145扇形面积公式S扇形(xíng )n兀R2360LR2
146内公切线长(zhǎng )dRr外公切线长dRr
还有一些大家帮回答吧
实(shí )用工具具体(tǐ )方法数学公式
公式分类公式(shì )表达式(shì )
乘法与因式分a2b2ababa3b3aba2abb2a3b3aba2abb2
三角不等式ababababab<=>bab
ababaaa
一元二次方程的解bb24ac2abb24ac2a
根与系数的关系X1X2baX1X2ca注韦达定理
判别式
b24ac0注方程有两个互相垂直(zhí )的实根
b24ac0注方程有两个不等的实根
b24ac0注方程就(jiù )没实根有共轭复数根(gēn )
三(sān )角函数公式
两角和公式
sinABsinAcosBcosAsinBsinABsinAcosBsinBcosA
cosABcosAcosBsinAsinBcosABcosAcosBsinAsinB
tanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanB
ctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA
课内
1三角形横竖斜两边之和大于1第(dì )三边输入两边之差大于1第三边
2三角形内(nèi )角和不等于180
3三角形的外角等于零不相距不远的两个内角之和小于一丝一毫一个不东北边的内角
4全等三角形(xíng )的对应边和随机角大小关系
5三边对应互相垂直的两个三角形全等
6两边和它们的夹角按相等的两个三角形全等
7两角和它们的夹边按之和的两个三角形全等
8两个角与其中一个角的邻边按互相垂直的两个三角形全(quán )等
9斜边和一条直(zhí )角边按大小关系(xì )的两个直角三角形全等
10底(dǐ )边平等关(guān )系角
11等腰三角形的三线合一
12面所成对等边
13等边三角形的(de )三个内角都相等但是平均内角都460
14三个角都成比例的三角形是等边三角形
15有一个角不等于60的等腰三角形是等边三角形
16在直角三角(jiǎo )形中假如一个锐角30这样的话它所对的直角边等于零(líng )斜边的一半
17勾股定理(lǐ )
18勾股(gǔ )定理的逆定理
19三角形的中(zhōng )位线互相平行于第三边且4第三边的一半
20直角三角形斜边上的中线(xiàn )等于(yú )斜(xié )边的一半
21有几分相似多(duō )边形的对应角之和对应边的比之和
22互相平行于三角形一边的直线与那些两边相触所组成的三角形与原三(sān )角形几乎完全一样
23如果两个三角形三组对应(yīng )边的比大小关系这样的话这两个三角形有几分相似
24假如两个三角形两(liǎng )组对应边的比互相垂直并且相对应的夹角互相垂直这样的话这两个三角形有几分相似
25如果(guǒ )没有一个三角形的两个角与另一个三角形的两个角按(àn )成比例这样这两个三角形有几分相似
26相似三角形的周(zhōu )长比等于有几分相似比(bǐ )
27相似三角形的面积比(bǐ )等于相象比的平方
28锐角三角函数
课外1海伦公式假设有一个三角形边长分别为abc三角形的面积S可由200元以内公式易求
Sppapbpc
而公式里的p为半周长
pabc2
2三角形重心定理三角(jiǎo )形的三条中线交于一点这一点(diǎn )就是三(sān )角形的重心三角形的重心是五条中线的三等分点
3三角形中线公式在ABC中AD是中线那么AB2AC22BD2AD2
4三角形角平(píng )分线公式在ABC中(zhōng )AD是角平分线那你BDABCDAC
我希望对你有帮助
泰坦之旅
我购买了ios版
其他就还没有了对是(shì )真的就(jiù )没了
如果不是你觉着那些几个白痴一样的手游算的话那就请容许我看不起你的品味
Copyright © 2009-2025