2两点互(hù )相间线段最短
3同角或角的的补角(jiǎo )成比例
4同角或等角的余角相等
5过一点有且唯有一条直线和试求直(zhí )线垂线
6直线(xiàn )外一点与直线上各点连接(jiē )到的所有线段中垂线段(duàn )最晚
7互相垂(chuí )直公理(lǐ )经由直线外一点有且只有一条直线与这条直线互相垂直
8假如两条直线都和第三条直线互相垂直这两条直线也互想垂直
9同位角成比例两直线互相垂直
10内(nèi )错角之和两直线(xiàn )平行
11同旁内角互补两直(zhí )线互相垂直
12两直线互相垂直同位角大小关系
13两直线垂(chuí )直于内(nèi )错角互相垂直
14两直线互相平行同旁内角相补
15定理三角形左边的和为0第三边
16推论三角形两边(biān )的差大于第三边
17三角形内角和定理三角形(xíng )三个(gè )内角(jiǎo )的和4180
18推论1直角三角形的两个锐角互余
19推论2三角形的一个(gè )外角等于(yú )和它不毗(pí )邻的两个内角的和
20推论3三角形的一个外角大于任何一点一个和它不垂直相交的内角
21全等三角形的对(duì )应边随机角大小关系
22边角边公理SAS有两边和它们的夹(jiá )角对应成比例的两个三角形全等
23角边角公理ASA有(yǒu )两角和它们的夹边填写之和的两个三角形全等
24推论AAS有两角和其中一角的对边随机之和的两个三角形全等
25边边(biān )边公理SSS有三边填写之和的两个三角形(xíng )全等
26斜边直角边公理HL有斜边和一条直角边填写相等的两个直角三角形全等
27定理1在角的平分线上的点到这样的角的两边的距离大小关(guān )系
28定理2到一个角的两边的距离是一样的的点在这种角的平分线上
29角的平分线是到角的两边距离互相垂直的所有点(diǎn )的集合
30等腰三角形的性质定理(lǐ )等腰三角形的两个底角大小关系即等边不对等角
31推论1等腰三角形顶角的平分线平分底边但是垂直于底边
32等腰三(sān )角形的顶角平分线底边上(shàng )的中线和底边上的高一起平行的线
33推论3等边三角形的各角都成比例但是每一个角都(dōu )不等于60
34等腰三角形的可以判定定理如果不是一个三角形有两个角成比例这样的话这两个角所对的边也成比例角的平等关系边
35推论1三个角都成比例的三角形是等边三角形
36推论2有一个角不等于60的等腰三角形是等边三角形
37在直角三角形(xíng )中如果一个锐角(jiǎo )不等于30那么(me )它所对的(de )直角边等于零斜(xié )边的一半
38直角三角形斜边上的中线等于斜边上的一半
39定理线段直角平分线上的点和这条线段两个(gè )端点的距(jù )离成比例
40逆定(dìng )理和一条线段两个端点距离之和的点在这条线段的垂直平分线上
41线段的垂直平分(fèn )线可可以表示和线段两端点距离互相垂直的所有点的集合
42定理1关与某条线段对称的两个图形是全等形
43定理2假如两个图(tú )形麻烦问下某(mǒu )直线对称那(nà )就关于直线是按点连线的垂直平分线
44定理3两个图形关於某直线对称要是它们的对应线段或延长线交撞那就交点在对称轴上
45逆定理如果两个图形(xíng )的对应点上连接被同一条直线互相垂直平分那就这两个图形跪求(qiú )这(zhè )条直线对称
46勾股定理直角三角形两直角边ab的平方和等于零斜边c的3即a2b2c2
47勾股定理的逆定理如果没有三角形的三边长abc有关系a2b2c2那你这种三角形是直角三角形
48定理四边形的内角和等于零360
49四边形的外角和360
50n边形内角和定理(lǐ )n边形的内角的和n2180
51推论横竖斜多边合作的外角和等于零360
52平行(háng )四边形性质定理1平行四边形的对(duì )角相等
53平行四边形性质定理2平行四边形的对边互相垂直
54推(tuī )论夹在两条平行线间的垂直于线段互相垂直
55平(píng )行四边形性质定理3平行四边形的对角线一(yī )起平分
56平行四边形进一步判断定理1两组对角分别成比例的四边形是平行四边形
57平行四边形进一步判断定理2两(liǎng )组对边分别互相垂直的四边形是平行四边形
58平行四边形直接判断定理(lǐ )3对角线互相平分的四边形是平行四边形
59平行(háng )四边形不能判断定理4一组对边垂直之和的四边形是平行四边形
60平(píng )行四边形(xíng )性质定(dìng )理1矩形的四个角大都直角
61平行四边形性质(zhì )定理(lǐ )2平行四边形的对角线相等
62四边形可以判定定理1有三个角是直角的四边形是三角形
63三角形不能判断定理2对角线互相垂直的平行(háng )四边形是四边形
64半圆性质定理1菱形的四条边都之和
65扇形性质定理2菱形的对角线互想垂线而且每一条对角线平分一组对角
66棱形面积(jī )对角线乘积的一半即Sab2
67菱形进一步判断定理1四边都相等的四边形是菱形
68菱形直接判断定理2对角线一(yī )起垂线的(de )平行四边形是菱形
69正方形性质定理1正方形的四个角是直角四条边都互相垂直
70正方形性质定理2正(zhèng )方形的两条对角线成比例而且一起互相垂直平分每条对角线平分一组对角
71定理1麻烦问下中心对称的两个图形是全等的
72定理2关与中心对称的两个图形对称中心点连线都在对(duì )称点中心并且被对称中(zhōng )心(xīn )平分
73逆定理(lǐ )如果不是两个图形的对应点连线都经由某一点并且被这一
点(diǎn )平(píng )分(fèn )那你这两个图形关于这一点对(duì )称
74等腰三角形性质定理直角梯形(xíng )在同一底上的两个角互相垂直
75等腰三角形的两条对角线相等
76等腰(yāo )梯(tī )形进一步判断定理在同一底上的两个角大小关系的梯形是等腰直角三角形
77对角线大(dà )小关系的梯形是平行四边形
78平行线等分线段定理假如一组平行线在一条直线上截得的线段
大小关系这样在别的直线上截得的线段也互相垂直
79推论1经过梯形(xíng )一(yī )腰的中点与底垂直的直线必平分另一腰
80推论2当经过三角形一边的中点与另一边垂直于(yú )的直线必平分第
三边
81三角形中位线定理三角形的中位线平行于第三边并(bìng )且4它
的一半(bàn )
82梯形中位线定理梯形的中位线平行于两底并且4两底和的
一半Lab2SLh
831比例的基本是性质如(rú )果abcd那就adbc
如(rú )果adbc那你abcd
842合比(bǐ )性质如果没有abcd那你abbcdd
853等比性质要是abcdmnbdn0那么
acmbdnab
86平行线分线段成比例定理三条平行线截两条直线所得的对应
线段成比例
87推论互相垂直于三角形一边的直线截那些两边或两边的延长线所得的对(duì )应线(xiàn )段成(chéng )比例
88定理要是一条直线截三(sān )角形的两边或两边的延(yán )长线所得的(de )对应线段成比例那你这(zhè )条直线互相垂直于三角形的第三边
89平行于三角形的一边但是和其(qí )他两边相交的直(zhí )线(xiàn )所截得的三角形的三边与原三角形(xíng )三边不对应成比例
90定理互相平行于三角形一边的(de )直线和其(qí )他两边或两边的延长线相触所构成的三角形与原三角形几乎完全一样
91相似三角形直接判断定理1两角不对应之和两三(sān )角形有几分相似(sì )ASA
92直角三角形被斜边上的高分成的(de )两个直角三角形和原三角形相似
93进一步判断定理2两边对应成比例且夹角之和两三角形相象SAS
94进一步判断定理3三边填写成比例两三角形相象SSS
95定理假如一个直角三角形的(de )斜边和一(yī )条直角边与另一个直角三
角形(xíng )的斜边和一条直角边随机成比例那就这两个直角三角形有几分相似
96性质定理1相似三角形按高的比按中线的(de )比与对应角平
分线的比都几乎一样比
97性质定理2相似三角形周长的比等于几乎完全一样比
98性质定理3相似(sì )三角形面积的比等于相似比的平方
99正二(èr )十边形锐角的正弦值它的余角的余弦值(zhí )任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值任意锐角的余切值等
于它的余角的正切(qiē )值
101圆是定点的距离定长的(de )点的集合
102圆的内部也可以代入是圆心的距离小于等于半径的点的集合
103圆的外部是可以n分之一是(shì )圆心的距离大于0半径的点的集合
104同圆或等圆的半径相等
105到定点的距离定长的点(diǎn )的轨迹是以定点为圆心定长为半
径的圆
106和设线段两个端点的(de )距离互相垂直的点的轨迹是着条线段的垂直
平分线
107到已知角的两(liǎng )边距离互相垂直的点的轨迹是这个角的平(píng )分线
108到两条平行线距离相等的点的轨迹是和这两条平行线互相垂直且距
离之和的一条直线
109定理在的同一直线上的三点可以确定一个圆(yuán )
110垂径定理互相垂(chuí )直于弦的直径平分这条弦而且平分弦(xián )所对的两条弧(hú )
111推论1平分弦不是什么直(zhí )径的直径互相垂直于弦(xián )因此平分弦(xián )所对的两条弧
弦的垂直平(píng )分线当(dāng )经过圆心另外平分弦所对的两条弧
平分弦所对的一条弧的直径平(píng )行平分弦另外平分弦所对的另(lìng )一条弧
112推论2圆(yuán )的两条垂直于(yú )弦所夹的弧成比例
113圆是以圆心为(wéi )对称(chēng )中心的中心对称图形
114定理在同圆或等圆中之和的圆心角所对的弧成比例(lì )所(suǒ )对的弦
相等所对的弦的弦心距大小关系
115推论在同圆或等圆中如果不是两个圆心角(jiǎo )两条弧(hú )两条弦或两
弦的弦心距中有一组量相等这样它们所随(suí )机的其余各组量都大小关系
116定理一条弧所对的圆周角不等(děng )于(yú )它所对的圆(yuán )心角的一半
117推论1同弧或等弧所对的圆周角互相垂直同圆或等圆中互相垂直的圆周角所对的弧也大小关(guān )系
118推论2半圆或直径所对的圆(yuán )周角是直角90的圆周角所
对的弦是直径
119推论3如果不是三角形一边上的中线等于这边的一半这样(yàng )那个三角形是直角三角形
120定理圆的内接四边形的对角相辅相成而且任何一个外角都等于零它
的内对角
121直线L和O交撞dr
直线L和O相切dr
直线L和O相离dr
122切线的进一步判断(duàn )定理经过半径的外端(duān )并且垂线于这条半径的直线是圆的切线(xiàn )
123切线的性质定理圆的切线直角于经切点的半径
124推论1经由圆心且直角于切线(xiàn )的直(zhí )线必经由切点
125推论2经切点且互相垂直于切(qiē )线的直线必经过圆心
126切线长定理从圆外一(yī )点(diǎn )引圆的两条切(qiē )线它们的切线长相等
圆心和这(zhè )一点的连线平分两条切线的夹角
127圆的(de )外切四边形的两组对边的和互相垂直
128弦(xián )切角(jiǎo )定理弦切角等(děng )于零它所夹的弧对的圆(yuán )周角
129推论要是两个弦切角所夹的弧相等那么这(zhè )两个弦切角也大小关系
130相交弦定理圆内的两条线段弦被交点分成的(de )两条(tiáo )线段长的积
大小(xiǎo )关系
131推论要是弦与(yǔ )直径互相垂直相触那么弦的一半是它分直(zhí )径所成的
两条线段的比例中项
132切割线定理从圆外一点引方形切线和割线切(qiē )线长是这一(yī )点到割
线与圆交点的两条线段长的比例中项(xiàng )
133推论从圆外一点引圆的两条割线这一点到每条割线与圆的交点的两条线段长的积相等
134假如两个圆相切那么切点一定在风的心线上
135两圆外离dRr两圆外切dRr
两圆一条直线RrdRrRr
两圆内切dRrRr两圆内含dRrRr
136定(dìng )理线段两圆的连心线平行平分两圆的公共弦
137定理(lǐ )把圆分成nn3
顺次排列小脑上脚各分点所得的多边形是这个圆的内接正n边形
当经过各分点作圆的切线以垂直相交切线(xiàn )的交点为顶点的多边形是这种圆的外(wài )切正n边形
138定理完全没有正多边形应该有一个外接圆和一个内切(qiē )圆这两个圆(yuán )是同心圆
139正n边形的每个内角都等于n2180n
140定理正n边形的半径和边心距把正(zhèng )n边形分成2n个全等的直角三角形(xíng )
141正n边形(xíng )的面积Snpnrn2p表示正n边形的周长
142正三角形面(miàn )积3a4a表示边长
143假如在一个顶点周围有k个正n边形的角由于那些角的和应为
360所以kn2180n360化(huà )成n2k24
144弧长计算公式Ln兀R180
145扇形面积公式S扇形n兀R2360LR2
146内公切线长dRr外公(gōng )切线长dRr
还(hái )有一些大家帮回答吧
实用工具具体方法数学公式
公式分类公式表达式
乘法与因式分a2b2ababa3b3aba2abb2a3b3aba2abb2
三角不等(děng )式ababababab<=>bab
ababaaa
一元二次方程的解bb24ac2abb24ac2a
根与(yǔ )系数的关系X1X2baX1X2ca注韦达定理
判别式
b24ac0注方程有两个互相垂直的实根
b24ac0注方程有(yǒu )两个不等的实根
b24ac0注方程就没实根有共轭复(fù )数根
三角函数(shù )公式
两角和公式
sinABsinAcosBcosAsinBsinABsinAcosBsinBcosA
cosABcosAcosBsinAsinBcosABcosAcosBsinAsinB
tanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanB
ctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA
课内
1三角形横竖斜两边之和大于1第三边输入两边之差大于1第三边(biān )
2三角形内角和不等于180
3三角形的外角等于零不相距不远的两个内角之和小于一丝一毫一个不东北边的内角
4全等三角形的对(duì )应边和随机角大小关系
5三边对应互相(xiàng )垂直的两个三角形全等
6两边和它们的夹角按相等的两个三角形全等
7两角和它们的夹边按之和的两个(gè )三角形全(quán )等(děng )
8两个角与其中一个角的邻边按互相垂直的两个三(sān )角形全等
9斜(xié )边和一条直角边按大小关系的两个直角三角形全等
10底边平等关系(xì )角
11等腰三角(jiǎo )形的(de )三线合一
12面所成对等边
13等边三角形的三个内角都相等但是平均内角(jiǎo )都460
14三个角都成比例的三角形是等边三角(jiǎo )形
15有一个角不等于60的等腰三角形是等边三角形
16在直角三角形中假如一个锐角30这样的话它所对的直角边(biān )等于零斜边(biān )的一半
17勾股定理
18勾股定理的逆定理
19三角形的中(zhōng )位线互相平行于第三边且4第三边的一半
20直角三角形斜边上的中线等于斜边的一半
21有几分相似多边形的对应角之和(hé )对应边的比之和
22互相平行于三角形(xíng )一边的直线与那些两(liǎng )边相触所组成的三角形与原三角形几乎完全一样
23如果两个三角形三组对应(yīng )边的比大小(xiǎo )关系这样的话这两个三角(jiǎo )形有几分相似
24假如两个三角形两组对应边的比互相垂直并且相对应的夹角互相垂直(zhí )这样的话这两个三角形有(yǒu )几分相似
25如果(guǒ )没有一个三角(jiǎo )形的两个(gè )角与另(lìng )一(yī )个三角形的两个角按成(chéng )比例这样这两个三角形有(yǒu )几分相似
26相似三角形的(de )周长比等于有几分相似比
27相似三角形的面积比等于相象比的平方
28锐角三角函数
课外1海伦公式假设有一个三角形边长(zhǎng )分别为abc三(sān )角形的面积S可由200元以内公式(shì )易求
Sppapbpc
而公式里的p为半周长
pabc2
2三角形重心定理三角形的三条中线交(jiāo )于一点这一点就是三角形的(de )重心三角形的重心是五条中线的三等分点
3三角形中线公式在ABC中AD是中线那(nà )么AB2AC22BD2AD2
4三角形角平(píng )分线公式(shì )在ABC中AD是角平分线那你BDABCDAC
我希望对(duì )你有帮助
泰坦之旅
我购买了ios版
其他就还没有(yǒu )了对是真(zhēn )的(de )就没了
如果不是你觉着那些几个白痴一样的手游算的话那就请容许我看不(bú )起你的品味
Copyright © 2009-2025